We study the gravitational lensing effect on the Cosmic Microwave Background (CMB) anisotropies performing a ray-tracing of the primordial CMB photons through intervening large-scale structures (LSS) distribution predicted by N-Body numerical simulations with a particular focus on the precise recovery of the lens-induced polarized counterpart of the source plane. We apply both a multiple plane ray-tracing and an effective deflection approach based on the Born approximation to deflect the CMB photons trajectories through the simulated lightcone. We discuss the results obtained with both these methods together with the impact of LSS non-linear evolution on the CMB temperature and polarization power spectra. We compare our results with semi-an...