In den letzten Jahren hat das Teilgebiet des Maschinellen Lernens, das sich mit Graphdaten beschäftigt, durch die Entwicklung von spezialisierten Graph-Neuronalen Netzen (GNNs) mit mathematischer Begründung in der spektralen Graphtheorie große Sprünge nach vorn gemacht. Zusätzlich zu natürlichen Graphdaten können diese Methoden auch auf Datensätze ohne Graphen angewendet werden, indem man einen Graphen künstlich mithilfe eines definierten Adjazenzbegriffs zwischen den Samplen konstruiert. Nach dem neueste Stand der Technik wird jedes Sample mit einer geringen Anzahl an Nachbarn verknüpft, um gleichzeitig das dünnbesetzte Verhalten natürlicher Graphen nachzuahmen, die Stärken bestehender GNN-Methoden auszunutzen und quadratische Abhängigkeit...
Illustrating how to implement efficient data structures for sparse graphs. When searching for graph...
Graph neural networks (GNNs) have achieved great success in many scenarios with graph-structured dat...
Cet article a été soumis et accepté dans la session: Jeunes Chercheuses et Jeunes Chercheurs (JCJC)...
The theme of this dissertation is machine learning on graph data. Graphs are generic models of signa...
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to ...
One of the most predominant techniques that have achieved phenomenal success in many modern applicat...
Graphs are important data structures that can capture interactions between individual entities. The...
Structures or graphs are pervasive in our lives. Although deep learning has achieved tremendous succ...
International audienceIn recent years, deep neural networks (DNNs) have known an important rise in p...
We study training of Graph Neural Networks (GNNs) for large-scale graphs. We revisit the premise of ...
Graphs provide a ubiquitous and universal data structure that can be applied in many domains such as...
The adaptive processing of graph data is a long-standing research topic that has been lately consoli...
Graphs are a powerful way to model network data with the objects as nodes and the relationship betwe...
This project will explore some of the most prominent Graph Neural Network variants and apply them to...
We investigate whether Graph Convolutional Neural Networks (GCNNs) may benefit from incorporating in...
Illustrating how to implement efficient data structures for sparse graphs. When searching for graph...
Graph neural networks (GNNs) have achieved great success in many scenarios with graph-structured dat...
Cet article a été soumis et accepté dans la session: Jeunes Chercheuses et Jeunes Chercheurs (JCJC)...
The theme of this dissertation is machine learning on graph data. Graphs are generic models of signa...
Graph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to ...
One of the most predominant techniques that have achieved phenomenal success in many modern applicat...
Graphs are important data structures that can capture interactions between individual entities. The...
Structures or graphs are pervasive in our lives. Although deep learning has achieved tremendous succ...
International audienceIn recent years, deep neural networks (DNNs) have known an important rise in p...
We study training of Graph Neural Networks (GNNs) for large-scale graphs. We revisit the premise of ...
Graphs provide a ubiquitous and universal data structure that can be applied in many domains such as...
The adaptive processing of graph data is a long-standing research topic that has been lately consoli...
Graphs are a powerful way to model network data with the objects as nodes and the relationship betwe...
This project will explore some of the most prominent Graph Neural Network variants and apply them to...
We investigate whether Graph Convolutional Neural Networks (GCNNs) may benefit from incorporating in...
Illustrating how to implement efficient data structures for sparse graphs. When searching for graph...
Graph neural networks (GNNs) have achieved great success in many scenarios with graph-structured dat...
Cet article a été soumis et accepté dans la session: Jeunes Chercheuses et Jeunes Chercheurs (JCJC)...