Background and Aim: Timely diagnosis and treatment of abnormal thyroid function can reduce the mortality associated with this disease. However, lack of timely diagnosis will have irreversible complications for the patient. Using data mining techniques, the aim of this study is to determine the status of the thyroid gland in terms of normality, hyperthyroidism or hypothyroidism. Materials and Methods: Using supervised and unsupervised methods after data preprocessing, predictive modeling was performed to classify thyroid disease. This is an analytical study and its dataset contains 215 independent records based on 5 continuous features retrieved from the UCI machine learning data reference. Results: In supervised method, multilayer perceptio...