A family of error-correcting codes is listdecodable from error fraction p if, for every code in the family, the number of codewords in any Hamming ball of fractional radius p is less than some integer L. It is said to be list-recoverable for input list size ℓ if for every sufficiently large subset of at least L codewords, there is a coordinate where the codewords take more than ℓ values. In this work, we study the list size of random linear codes for both list-decoding and list-recovery as the rate approaches capacity. We show the following claims hold with high probability over the choice of the code (below q is the alphabet size, and ε > 0 is the gap to capacity). (1) A random linear code of rate 1 - logq(!...