Nowadays, most nonparametric regression research involves more than one predictor variable and generally uses the same type of estimator for all predictors. In the real case, each predictor variable likely has a different form of regression curve so that if it is forced, it can produce an estimation form that does not match the data pattern. Thus, it is necessary to develop a regression curve estimation model under the data pattern, namely the mixed estimator. The focus of this study is an additive nonparametric regression model, a mix of the Truncated Spline and Gaussian Kernel. There is a knot point in the Truncated Spline, while in the Gaussian Kernel, there is bandwidth. To choose the optimal knot point and bandwidth in a mixed estimato...
Peneliti lebih banyak mengembangkan satu tipe estimator dalam regresi nonparametrik. Namun pada keny...
Analisis regresi merupakan metode analisis untuk mengetahui hubungan antara variabel respon dan vari...
Semiparametric additive regression model is a combination of parametric and nonparametric regression...
In nonparametric regression, it is generally crucial to select “nearly ” optimal smoothing parameter...
Regresi nonparametrik merupakan salah satu pendekatan yang digunakan apabila data tidak mengikuti su...
This study proposes the development of nonparametric regression for data containing spatial heteroge...
In many applications two or more dependent variables are observed at several values of the independe...
So far, most of the researchers developed one type of estimator in nonparametric regression. But in ...
In daily life, mixed data patterns are often found, namely, those that change at a certain sub-inter...
Regresi nonparametrik merupakan pendekatan regresi yang digunakan apabila pola hubungan antara varia...
Existing literature in nonparametric regression has established a model that only applies one estima...
Longitudinal data modeling is widely carried out using parametric methods. However, when the paramet...
http://demonstrations.wolfram.com/NonparametricAdditiveModelingBySmoothingSplinesRobustUnbiase/.Nonp...
The response variable of the regression analysis has a linear relationship with one of the variable ...
Spline smoothing is a popular method of estimating the functions in a nonparametric regression model...
Peneliti lebih banyak mengembangkan satu tipe estimator dalam regresi nonparametrik. Namun pada keny...
Analisis regresi merupakan metode analisis untuk mengetahui hubungan antara variabel respon dan vari...
Semiparametric additive regression model is a combination of parametric and nonparametric regression...
In nonparametric regression, it is generally crucial to select “nearly ” optimal smoothing parameter...
Regresi nonparametrik merupakan salah satu pendekatan yang digunakan apabila data tidak mengikuti su...
This study proposes the development of nonparametric regression for data containing spatial heteroge...
In many applications two or more dependent variables are observed at several values of the independe...
So far, most of the researchers developed one type of estimator in nonparametric regression. But in ...
In daily life, mixed data patterns are often found, namely, those that change at a certain sub-inter...
Regresi nonparametrik merupakan pendekatan regresi yang digunakan apabila pola hubungan antara varia...
Existing literature in nonparametric regression has established a model that only applies one estima...
Longitudinal data modeling is widely carried out using parametric methods. However, when the paramet...
http://demonstrations.wolfram.com/NonparametricAdditiveModelingBySmoothingSplinesRobustUnbiase/.Nonp...
The response variable of the regression analysis has a linear relationship with one of the variable ...
Spline smoothing is a popular method of estimating the functions in a nonparametric regression model...
Peneliti lebih banyak mengembangkan satu tipe estimator dalam regresi nonparametrik. Namun pada keny...
Analisis regresi merupakan metode analisis untuk mengetahui hubungan antara variabel respon dan vari...
Semiparametric additive regression model is a combination of parametric and nonparametric regression...