© 2018 Society for Industrial and Applied Mathematics. The edit distance (a.k.a. the Levenshtein distance) between two strings is defined as the minimum number of insertions, deletions, or substitutions of symbols needed to transform one string into another. The problem of computing the edit distance between two strings is a classical computational task, with a well-known algorithm based on dynamic programming. Unfortunately, all known algorithms for this problem run in nearly quadratic time. In this paper we provide evidence that the near-quadratic running time bounds known for the problem of computing edit distance might be tight. Specifically, we show that if the edit distance can be computed in time O(n2−δ) for some constant δ > 0, then...