© 2020 ACM. In the dynamic Single-Source Shortest Paths (SSSP) problem, we are given a graph G=(V,E) subject to edge insertions and deletions and a source vertex sg V, and the goal is to maintain the distance d(s,t) for all tg V. Fine-grained complexity has provided strong lower bounds for exact partially dynamic SSSP and approximate fully dynamic SSSP [ESA'04, FOCS'14, STOC'15]. Thus much focus has been directed towards finding efficient partially dynamic (1+")-approximate SSSP algorithms [STOC'14, ICALP'15, SODA'14, FOCS'14, STOC'16, SODA'17, ICALP'17, ICALP'19, STOC'19, SODA'20, SODA'20]. Despite this rich literature, for directed graphs there are no known deterministic algorithms for (1+")-approximate dynamic SSSP that perform better th...