Sigma-bodové filtry, jako je UKF, jsou populární alternativou všudypřítomného EKF. Klasická kvadraturní pravidla používaná ve sigma-bodových filtrech jsou motivována polynomiální aproximací integrandu, nicméně v aplikovaném kontextu nelze tyto předpoklady vždy zdůvodnit. V důsledku toho může chyba kvadratury vnést chybu do odhadovaných momentů, pro které v klasických sigma-bodových filtrech neexistuje kompenzační mechanismus. To může vést k odhadům a predikcím, které jsou špatně kalibrovány. V tomto článku zkoumáme Bayes-Sardovu kvadraturní metodu v kontextu sigma-bodových filtrů, která umožňuje formalizovat nejistotu způsobenou chybou kvadratury v rámci pravděpodobnostního modelu. Naším prvním příspěvkem je ukázat známé klasické kvadratury...
A pre-requisite for the "optimal estimate'' by the ensemble-based Kalman filter (EnKF) is the Gaussi...
Dissertação (mestrado)—Universidade de Brasília, Programa de Pós-Graduação em Engenharia Elétrica, 2...
We consider the problem of optimal state estimation for a wide class of nonlinear time series models...
Sigma-bodové filtry, jako je UKF, jsou populární alternativou všudypřítomného EKF. Klasická kvadratu...
This article is concerned with Gaussian process quadratures, which are numerical integration methods...
This paper is concerned with the use of Gaussian process regression based quadrature rules in the co...
In this paper, a new method termed as new sigma point Kalman filter (NSKF), is proposed for generat...
The development of a reliable Sense And Avoid (SAA) system is one of the limiting aspects for the ...
In this paper we present a method for estimating mean and covariance of a transformed Gaussian rando...
The unscented Kalman filter (UKF) is a widely used method in control and time series applications. T...
The aim of this article is to design a moment transformation for Student-t distributed random variab...
This paper is concerned with sigma-point methods for filtering in nonlinear systems, where the proce...
Abstract—This paper is concerned with the use of Gaussian process regression based quadrature rules ...
Integration of Unmanned Aerial Vehicles (UAVs) into civil airspace is becoming a fundamental require...
This paper is concerned with Gaussian approximations to the posterior probability density function (...
A pre-requisite for the "optimal estimate'' by the ensemble-based Kalman filter (EnKF) is the Gaussi...
Dissertação (mestrado)—Universidade de Brasília, Programa de Pós-Graduação em Engenharia Elétrica, 2...
We consider the problem of optimal state estimation for a wide class of nonlinear time series models...
Sigma-bodové filtry, jako je UKF, jsou populární alternativou všudypřítomného EKF. Klasická kvadratu...
This article is concerned with Gaussian process quadratures, which are numerical integration methods...
This paper is concerned with the use of Gaussian process regression based quadrature rules in the co...
In this paper, a new method termed as new sigma point Kalman filter (NSKF), is proposed for generat...
The development of a reliable Sense And Avoid (SAA) system is one of the limiting aspects for the ...
In this paper we present a method for estimating mean and covariance of a transformed Gaussian rando...
The unscented Kalman filter (UKF) is a widely used method in control and time series applications. T...
The aim of this article is to design a moment transformation for Student-t distributed random variab...
This paper is concerned with sigma-point methods for filtering in nonlinear systems, where the proce...
Abstract—This paper is concerned with the use of Gaussian process regression based quadrature rules ...
Integration of Unmanned Aerial Vehicles (UAVs) into civil airspace is becoming a fundamental require...
This paper is concerned with Gaussian approximations to the posterior probability density function (...
A pre-requisite for the "optimal estimate'' by the ensemble-based Kalman filter (EnKF) is the Gaussi...
Dissertação (mestrado)—Universidade de Brasília, Programa de Pós-Graduação em Engenharia Elétrica, 2...
We consider the problem of optimal state estimation for a wide class of nonlinear time series models...