International audienceWe give a new combinatorial interpretation of the noncommutative Lagrange inversion formula, more precisely, of the formula of Brouder-Frabetti-Krattenthaler for the antipode of the noncommutative Faà di Bruno algebra
International audienceWe consider a generalization of (pro)algebraic loops defined on general catego...
Fa\`a di Bruno's formula gives an expression for the derivatives of the composition of two real-valu...
International audienceIn these lectures we present five interpretations of the Fa' di Bruno formula ...
International audienceWe give a new combinatorial interpretation of the noncommutative Lagrange inve...
International audienceWe give a one-parameter deformation of the noncommutative Lagrange inversion f...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
Cette thèse est consacrée à l’étude de familles à un paramètre de coproduits sur lesfonctions symétr...
International audienceWe give a one-parameter deformation of the noncommutative Lagrange inversion f...
AbstractWe compute the non-commutative Frobenius characteristic of the natural action of the 0-Hecke...
23 pagesWe provide operadic interpretations for two Hopf subalgebras of the algebra of parking funct...
23 pagesWe provide operadic interpretations for two Hopf subalgebras of the algebra of parking funct...
This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic funct...
International audienceWe consider a generalization of (pro)algebraic loops defined on general catego...
Fa\`a di Bruno's formula gives an expression for the derivatives of the composition of two real-valu...
International audienceIn these lectures we present five interpretations of the Fa' di Bruno formula ...
International audienceWe give a new combinatorial interpretation of the noncommutative Lagrange inve...
International audienceWe give a one-parameter deformation of the noncommutative Lagrange inversion f...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
This thesis is devoted to study one-parameter families of coproducts on symmetric functionsand their...
Cette thèse est consacrée à l’étude de familles à un paramètre de coproduits sur lesfonctions symétr...
International audienceWe give a one-parameter deformation of the noncommutative Lagrange inversion f...
AbstractWe compute the non-commutative Frobenius characteristic of the natural action of the 0-Hecke...
23 pagesWe provide operadic interpretations for two Hopf subalgebras of the algebra of parking funct...
23 pagesWe provide operadic interpretations for two Hopf subalgebras of the algebra of parking funct...
This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic funct...
International audienceWe consider a generalization of (pro)algebraic loops defined on general catego...
Fa\`a di Bruno's formula gives an expression for the derivatives of the composition of two real-valu...
International audienceIn these lectures we present five interpretations of the Fa' di Bruno formula ...