At the core of successful manipulation and computation over large geometric data is the notion of approximation, both structural and computational. The focus of this thesis will be on the combinatorial and algorithmic aspects of approximations of point-set data P in d-dimensional Euclidean space. It starts with a study of geometric data depth where the goal is to compute a point which is the 'combinatorial center' of P. Over the past 50 years several such measures of combinatorial centers have been proposed, and we will re-examine several of them: Tukey depth, Simplicial depth, Oja depth and Ray-Shooting depth. This can be generalized to approximations with a subset, leading to the notion of epsilon-nets. There we will study the problem of ...