This thesis is divided into three parts. The first part deals with cylindric plane partitions. The second with lambda-determinants and the third with commutators in semi-circular systems. Cylindric plane partitions may be thought of as a natural generalization of reverse plane partitions. A generating series for the enumeration of cylindric plane partitions was recently given by Borodin. The first result of section one is a new bijective proof of Borodin's identity which makes use of Fomin's growth diagram framework for generalized RSK correspondences. The second result is a (q, t)-analog of Borodin's identity which extends previous work by Okada in the reverse plane partition case. The third result is an explicit combinatorial interpretati...