We study the distributed Linear Quadratic Gaussian (LQG) control problem in discrete-time and finite-horizon, where the controller depends linearly on the history of the outputs and it is required to lie in a given subspace, e.g. to possess a certain sparsity pattern. It is well-known that this problem can be solved with convex programming within the Youla domain if and only if a condition known as Quadratic Invariance (QI) holds. In this paper, we first show that given QI sparsity constraints, one can directly descend the gradient of the cost function within the domain of output-feedback controllers and converge to a global optimum. Note that convergence is guaranteed despite non-convexity of the cost function. Second, we characterize a cl...
Abstract—This paper is concerned with the optimal dis-tributed control (ODC) problem for discrete-ti...
This paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control problem w...
We study the global linear convergence of policy gradient (PG) methods for finite-horizon explorator...
We study the distributed Linear Quadratic Gaussian (LQG) control problem in discrete-time and finite...
The problem of robust distributed control arises in several large-scale systems, such as transportat...
The recent years have witnessed a steadily increasing deployment of large-scale systems and infrastr...
We address the problem of designing optimal linear time-invariant (LTI) sparse controllers for LTI s...
We consider the problem of computing optimal linear control policies for linear systems in finite-ho...
We consider the problem of computing optimal linear control policies for linear systems in finite-ho...
Abstract—We consider the problem of constructing optimal decentralized controllers. We formulate thi...
We consider a discrete-time linear quadratic Gaussian networked control setting where the (full info...
peer reviewedLinear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is stud...
The problem of finding an optimal decentralized controller is considered, where both the plant and t...
The optimization landscape of optimal control problems plays an important role in the convergence of...
This thesis considers methods for synthesis of linear quadratic controllers for large-scale, interco...
Abstract—This paper is concerned with the optimal dis-tributed control (ODC) problem for discrete-ti...
This paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control problem w...
We study the global linear convergence of policy gradient (PG) methods for finite-horizon explorator...
We study the distributed Linear Quadratic Gaussian (LQG) control problem in discrete-time and finite...
The problem of robust distributed control arises in several large-scale systems, such as transportat...
The recent years have witnessed a steadily increasing deployment of large-scale systems and infrastr...
We address the problem of designing optimal linear time-invariant (LTI) sparse controllers for LTI s...
We consider the problem of computing optimal linear control policies for linear systems in finite-ho...
We consider the problem of computing optimal linear control policies for linear systems in finite-ho...
Abstract—We consider the problem of constructing optimal decentralized controllers. We formulate thi...
We consider a discrete-time linear quadratic Gaussian networked control setting where the (full info...
peer reviewedLinear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is stud...
The problem of finding an optimal decentralized controller is considered, where both the plant and t...
The optimization landscape of optimal control problems plays an important role in the convergence of...
This thesis considers methods for synthesis of linear quadratic controllers for large-scale, interco...
Abstract—This paper is concerned with the optimal dis-tributed control (ODC) problem for discrete-ti...
This paper is concerned with a mean-field linear quadratic (LQ, for short) optimal control problem w...
We study the global linear convergence of policy gradient (PG) methods for finite-horizon explorator...