Artificial Intelligence systems are widely used and are increasingly impacting people's daily lives, largely due to advances in Machine Learning and their high accuracy. Models are often opaque and make it difficult to understand their logic. Their interpretability becomes more necessary, especially in high-risk domains. This work has focused on the financial domain, in the task of credit risk prediction, on the data set of home equity loan applications (HELOC). Different models have been proposed and techniques have been applied to obtain interpretable models. Interpretability metrics have been defined, which allow the comparison of models based on interpretability criteria and not only on accuracy. The results obtained show that the choic...
Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solici...
This review analyzes a selection of scientific articles on the implementation of Credit Risk Assessm...
Credit risk has been a topic widely studied and analyzed in the banking sector for many years. Nowad...
Artículo de revistaThe past two decades have witnessed the rapid development of machine learning tec...
Atualmente técnicas de aprendizado de máquina vêm sendo constantemente utilizadas para apoiar no pro...
ilustraciones, gráficas, tablasLas calificaciones crediticias corporativas son uno de los indicadore...
La complejidad en la gestión de los riesgos financieros ha aumentado durante los últimos años, lo cu...
Uno de los principales retos en el uso de modelos de aprendizaje automático, o machine learning en i...
Credit score models quantify the risks in credit operations, customer segmentation, and approve or r...
Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e TecnologiaMé...
The ability to foresee financial distress in business is paramount, as decisions regarding inappropr...
En este artículo estudiamos el rendimiento de diferentes modelos de aprendizaje automático —machine ...
Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solici...
The following project aims to identify algorithm accurately using a comparison of Machine Learning t...
Trabalho de Projeto do Mestrado em Economia apresentado à Faculdade de EconomiaExistem vários método...
Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solici...
This review analyzes a selection of scientific articles on the implementation of Credit Risk Assessm...
Credit risk has been a topic widely studied and analyzed in the banking sector for many years. Nowad...
Artículo de revistaThe past two decades have witnessed the rapid development of machine learning tec...
Atualmente técnicas de aprendizado de máquina vêm sendo constantemente utilizadas para apoiar no pro...
ilustraciones, gráficas, tablasLas calificaciones crediticias corporativas son uno de los indicadore...
La complejidad en la gestión de los riesgos financieros ha aumentado durante los últimos años, lo cu...
Uno de los principales retos en el uso de modelos de aprendizaje automático, o machine learning en i...
Credit score models quantify the risks in credit operations, customer segmentation, and approve or r...
Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e TecnologiaMé...
The ability to foresee financial distress in business is paramount, as decisions regarding inappropr...
En este artículo estudiamos el rendimiento de diferentes modelos de aprendizaje automático —machine ...
Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solici...
The following project aims to identify algorithm accurately using a comparison of Machine Learning t...
Trabalho de Projeto do Mestrado em Economia apresentado à Faculdade de EconomiaExistem vários método...
Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solici...
This review analyzes a selection of scientific articles on the implementation of Credit Risk Assessm...
Credit risk has been a topic widely studied and analyzed in the banking sector for many years. Nowad...