International audienceBiased regression is an alternative to ordinary least squares (OLS) regression, especially when explanatory variables are highly correlated. In this paper, we examine the geometrical structure of the shrinkage factors of biased estimators. We show that, in most cases, shrinkage factors cannot belong to [0, 1] in all directions. We also compare the shrinkage factors of ridge regression (RR), principal component regression (PCR) and partial least-squares regression (PLSR) in the orthogonal directions obtained by the signal-to-noise ratio (SNR) algorithm. In these directions, we find that PLSR and RR behave well, whereas shrinkage factors of PCR have an erratic behaviour
The density function of the stochastic shrinkage parameters of the operational Liu type estimator is...
Focusing on a single sample obtained randomly with replacement from a single population, this articl...
Ridge regression method is an improved method when the assumptions of independence of the explanator...
AbstractBiased regression is an alternative to ordinary least squares (OLS) regression, especially w...
Biased regression is an alternative to ordinary least squares (OLS) regression, espe-cially when exp...
In regression analysis, it is desired that no multicollinearity should exist between the independent...
Includes bibliographical references.Shrinkage estimation is an increasingly popular class of biased ...
The paper discusses the merits of partial shrinkage of the ordinary least square estimator of the co...
This paper shows how ridge regression and other shrinkage estimates can be used to improve the perfo...
Abstract. Statistical literature has several methods for coping with multicollinearity. This paper i...
The predictive value of a statistical model can often be improved by applying shrinkage methods. Thi...
International audienceOrdinary least square is the common way to estimate linear regression models. ...
This paper considers a class of recently developed biased estimators of regression coefficients and ...
Regression analysis is a commonly used approach to modelling the relationships between dependent and...
In this paper, we consider the estimation of the parameters of the non-orthogonal regression model, ...
The density function of the stochastic shrinkage parameters of the operational Liu type estimator is...
Focusing on a single sample obtained randomly with replacement from a single population, this articl...
Ridge regression method is an improved method when the assumptions of independence of the explanator...
AbstractBiased regression is an alternative to ordinary least squares (OLS) regression, especially w...
Biased regression is an alternative to ordinary least squares (OLS) regression, espe-cially when exp...
In regression analysis, it is desired that no multicollinearity should exist between the independent...
Includes bibliographical references.Shrinkage estimation is an increasingly popular class of biased ...
The paper discusses the merits of partial shrinkage of the ordinary least square estimator of the co...
This paper shows how ridge regression and other shrinkage estimates can be used to improve the perfo...
Abstract. Statistical literature has several methods for coping with multicollinearity. This paper i...
The predictive value of a statistical model can often be improved by applying shrinkage methods. Thi...
International audienceOrdinary least square is the common way to estimate linear regression models. ...
This paper considers a class of recently developed biased estimators of regression coefficients and ...
Regression analysis is a commonly used approach to modelling the relationships between dependent and...
In this paper, we consider the estimation of the parameters of the non-orthogonal regression model, ...
The density function of the stochastic shrinkage parameters of the operational Liu type estimator is...
Focusing on a single sample obtained randomly with replacement from a single population, this articl...
Ridge regression method is an improved method when the assumptions of independence of the explanator...