Performance anomaly detection is crucial for long running, large scale distributed systems. However, existing works focus on the detection of specific types of anomalies, rely on historical failure data, and cannot adapt to changes in system behavior at run time. In this work, we propose an adaptive framework for the detection and identification of complex anomalous behaviors, such as deadlocks and livelocks, in distributed systems without historical failure data. Our framework employs a two-step process involving two online SVM classifiers on periodically collected system metrics to identify at run time normal and anomalous behaviors such as deadlock, livelock, unwanted synchronization, and memory leaks. Our approach achieves over 0.70 F-s...