In many evolutionary algorithms (EAs), a parameter that needs to be tuned is that of the mutation rate, which determines the probability for each decision variable to be mutated. Typically, this rate is set to 1/n for the duration of the optimization, where n is the number of decision variables. This setting has the appeal that the expected number of mutated variables per iteration is one. In a recent theoretical study, it was proposed to sample the number of mutated variables from a power-law distribution. This results in a significantly higher probability on larger numbers of mutations, so that escaping local optima becomes more probable. In this paper, we propose another class of non-uniform mutation rates. We study the benefits of this ...