First Online: 22 May 2018An étale module for a linear algebraic group G is a complex vector space V with a rational G-action on V that has a Zariski-open orbit and dimG = dim V . Such a module is called super-étale if the stabilizer of a point in the open orbit is trivial. Popov (2013) proved that reductive algebraic groups admitting super-étale modules are special algebraic groups. He further conjectured that a reductive group admitting a super-étale module is always isomorphic to a product of general linear groups. Our main result is a construction of counterexamples to this conjecture, namely, a family of super-étale modules for groups with a factor Spn for arbitrary n≥ 1. A similar construction provides a family of étale modules for gro...