Dans cette thèse, nous abordons les défis de la conduite autonome en environnement urbain en utilisant des algorithmes d’apprentissage par renforcement profond de bout-en-bout, i.e. des données brutes des capteurs jusqu’au contrôle des actuateurs du véhicule. L’apprentissage par renforcement (RL) est un des trois grands paradigmes de l’apprentissage automatique. Il se distingue de l’apprentissage supervisé par le fait que les agents apprennent par essai-erreur à partir d’un signal de récompense et non pas par simple supervision avec des paires entrée-label comme pour l’apprentissage supervisé, le type d’apprentissage le plus utilisé aujourd’hui dans les applications d’intelligence artificielle. Dans l’apprentissage par renforcement, on cher...
Deep Reinforcement Learning has led us to newer possibilities in solving complex control and navigat...
This thesis studies the problem of traffic optimization through traffic light signals on road networ...
Deep reinforcement learning (DRL) is a burgeoning sub-field in the realm of artificial intelligence ...
In this thesis, we address the challenges of autonomous driving in an urban environment using end-to...
The researcher developed an autonomous driving simulation by training an end-to-end policy model usi...
L'apprentissage par renforcement est une approche permettant de résoudre un problème de prise de déc...
Autonomous cars must be capable to operate in various conditions and learn from unforeseen scenario...
In this project, an RGB camera will be used as data input to explore an end-to-end method based on v...
Deep reinforcement learning is actively used for training autonomous and adversarial car policies in...
Dans cette thèse de doctorat, nous étudions comment des véhicules autonomes peuvent apprendre à gara...
In this work, we aim to apply Artificial Intelligence techniques, based on the Machine Learning appr...
With the rapid development of autonomous driving and artificial intelligence technology, end-to-end ...
In this thesis, we will be investigating the current landscape of state-of-the-art methods using dee...
In this work, we combine Curriculum Learning with Deep Reinforcement Learning to learn without any p...
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Campus Joinville, Programa de Pós-G...
Deep Reinforcement Learning has led us to newer possibilities in solving complex control and navigat...
This thesis studies the problem of traffic optimization through traffic light signals on road networ...
Deep reinforcement learning (DRL) is a burgeoning sub-field in the realm of artificial intelligence ...
In this thesis, we address the challenges of autonomous driving in an urban environment using end-to...
The researcher developed an autonomous driving simulation by training an end-to-end policy model usi...
L'apprentissage par renforcement est une approche permettant de résoudre un problème de prise de déc...
Autonomous cars must be capable to operate in various conditions and learn from unforeseen scenario...
In this project, an RGB camera will be used as data input to explore an end-to-end method based on v...
Deep reinforcement learning is actively used for training autonomous and adversarial car policies in...
Dans cette thèse de doctorat, nous étudions comment des véhicules autonomes peuvent apprendre à gara...
In this work, we aim to apply Artificial Intelligence techniques, based on the Machine Learning appr...
With the rapid development of autonomous driving and artificial intelligence technology, end-to-end ...
In this thesis, we will be investigating the current landscape of state-of-the-art methods using dee...
In this work, we combine Curriculum Learning with Deep Reinforcement Learning to learn without any p...
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Campus Joinville, Programa de Pós-G...
Deep Reinforcement Learning has led us to newer possibilities in solving complex control and navigat...
This thesis studies the problem of traffic optimization through traffic light signals on road networ...
Deep reinforcement learning (DRL) is a burgeoning sub-field in the realm of artificial intelligence ...