In this thesis, we investigate the adaptation of GP to overcome the data Volume hurdle in Big Data problems. GP is a well-established meta-heuristic for classification problems but is impaired with its computing cost. First, we conduct an extensive review enriched with an experimental comparative study of training set sampling algorithms used for GP. Then, based on the previous study results, we propose some extensions based on hierarchical sampling. The latter combines active sampling algorithms on several levels and has proven to be an appropriate solution for sampling techniques that can’t deal with large datatsets (like TBS) and for applying GP to a Big Data problem as Higgs Boson classification.Moreover, we formulate a new sampling app...
Big data processing is the new challenge for analytical, machine learning techniques. Many efforts a...
Analysing large-scale data brings promises of new levels of scientific discovery and economic value. ...
Hyperparameter optimization is a crucial task affecting the final performance of machine learning so...
Dans cette thèse, nous étudions l'adaptation des Programmes Génétiques (GP) pour surmonter l'obstacl...
International audienceWith the growing number of available databases having a very large number of r...
Extract knowledge and significant information from very large data sets is a main topic in Data Scie...
Le travail de recherche exposé dans cette thèse concerne le développement d'approches à base de grow...
The research outlined in this thesis concerns the development of approaches based on growing neural ...
This thesis focuses on methods allowing to tackle complexity problem of specific algorithms in order...
Lors de ces dernières années les volumes de données analysées par les entreprises et les laboratoire...
International audienceThe amount of available data for data mining, knowledge discovery continues to...
Big Data promises new scientific discovery and economic value. Genetic algorithms (GAs) have proven ...
in Advances in Intelligent Systems and Computing, vol. 529The amount of available data for data mini...
The addition of knowledge and data has increased exponentially in the last decade or so. Previously ...
À l'ère de Big Data, le développement de modèles d'apprentissage machine efficaces et évolutifs opér...
Big data processing is the new challenge for analytical, machine learning techniques. Many efforts a...
Analysing large-scale data brings promises of new levels of scientific discovery and economic value. ...
Hyperparameter optimization is a crucial task affecting the final performance of machine learning so...
Dans cette thèse, nous étudions l'adaptation des Programmes Génétiques (GP) pour surmonter l'obstacl...
International audienceWith the growing number of available databases having a very large number of r...
Extract knowledge and significant information from very large data sets is a main topic in Data Scie...
Le travail de recherche exposé dans cette thèse concerne le développement d'approches à base de grow...
The research outlined in this thesis concerns the development of approaches based on growing neural ...
This thesis focuses on methods allowing to tackle complexity problem of specific algorithms in order...
Lors de ces dernières années les volumes de données analysées par les entreprises et les laboratoire...
International audienceThe amount of available data for data mining, knowledge discovery continues to...
Big Data promises new scientific discovery and economic value. Genetic algorithms (GAs) have proven ...
in Advances in Intelligent Systems and Computing, vol. 529The amount of available data for data mini...
The addition of knowledge and data has increased exponentially in the last decade or so. Previously ...
À l'ère de Big Data, le développement de modèles d'apprentissage machine efficaces et évolutifs opér...
Big data processing is the new challenge for analytical, machine learning techniques. Many efforts a...
Analysing large-scale data brings promises of new levels of scientific discovery and economic value. ...
Hyperparameter optimization is a crucial task affecting the final performance of machine learning so...