This thesis studies irreversible Markov chains for spin models and particle systems. It analyzes their convergence towards equilibrium in a number of cases, and it proposes new algorithms with improved properties.The first two chapters review some aspects of probability theory, and of the theory of Markov chains. A particular irreversible Markov chain, making use of the “lifting” concept and employing the factorized Metropolis filter, is discussed. It is found to speed up the mixing in many models.The third chapter studies irreversible Markov chains for the one-dimensional hard-sphere model. We obtain an exact result for the mixing time in a continuous case (realizing the “event-chain” algorithm). We relate this problem, and its solutions, ...
Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so...
We study the approach to equilibrium of the event-chain Monte Carlo (ECMC) algorithm for the one-dim...
International audienceWe propose the clock Monte Carlo technique for sampling each successive chain ...
This thesis studies irreversible Markov chains for spin models and particle systems. It analyzes the...
This thesis studies the irreversible Markov chain in the spin systems and particle systems,theoretic...
This thesis deals with the development and application in statistical physics of a general framework...
This thesis deals with the development and application in statistical physics of a general framework...
Cette thèse porte sur le développement et l'application en physique statistique d'un nouveau paradig...
International audienceWe analyze the convergence of the irreversible event-chain Monte Carlo algorit...
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin...
International audienceWe analyze the convergence of the irreversible event-chain Monte Carlo algorit...
Nous présentons des approches théoriques et numériques pour deux dynamiques irréversibles et parallè...
AbstractIn a recent paper Brydges, Fröhlich, and Spencer have successfully applied Markov chains to ...
Thermodynamics is aimed at studying the fluctuations of configurations in physical systems. This app...
On s'intéresse à deux classes de chaînes de Markov combinatoires. On commence avec les chaînes de Ma...
Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so...
We study the approach to equilibrium of the event-chain Monte Carlo (ECMC) algorithm for the one-dim...
International audienceWe propose the clock Monte Carlo technique for sampling each successive chain ...
This thesis studies irreversible Markov chains for spin models and particle systems. It analyzes the...
This thesis studies the irreversible Markov chain in the spin systems and particle systems,theoretic...
This thesis deals with the development and application in statistical physics of a general framework...
This thesis deals with the development and application in statistical physics of a general framework...
Cette thèse porte sur le développement et l'application en physique statistique d'un nouveau paradig...
International audienceWe analyze the convergence of the irreversible event-chain Monte Carlo algorit...
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin...
International audienceWe analyze the convergence of the irreversible event-chain Monte Carlo algorit...
Nous présentons des approches théoriques et numériques pour deux dynamiques irréversibles et parallè...
AbstractIn a recent paper Brydges, Fröhlich, and Spencer have successfully applied Markov chains to ...
Thermodynamics is aimed at studying the fluctuations of configurations in physical systems. This app...
On s'intéresse à deux classes de chaînes de Markov combinatoires. On commence avec les chaînes de Ma...
Efficient algorithms for approximate counting and sampling in spin systems typically apply in the so...
We study the approach to equilibrium of the event-chain Monte Carlo (ECMC) algorithm for the one-dim...
International audienceWe propose the clock Monte Carlo technique for sampling each successive chain ...