Glitches (i.e. spurious signal transitions) are major sources of dynamic power consumption in modern FPGAs. In this paper, we present an FPGA-targeted, glitch-aware, high-level binding algorithm for power and area reduction, accomplished via dynamic power estimation and multiplexer balancing. Our binding algorithm employs a glitch-aware dynamic power estimation technique derived from the FPGA technology mapper in [6]. High-level binding results are converted to VHDL, and synthesized with Altera???s Quartus II software, targeting the Cyclone II FPGA architecture. Power characteristics are evaluated with the Altera PowerPlay Power Analyzer. The binding results of our algorithm are compared to LOPASS, a state-of-the-art low-power high-level sy...