This research treats power optimization for energy converters, such as thermal, solar and electrochemical engines (fuel cells). A common methodology is developed for the assessment of power limits in thermal systems and fuel cells. Thermodynamic analyses lead to converter efficiency and limiting power. Steady and dynamic systems are investigated. Static optimization of steady systems applies the differential calculus or Lagrange multipliers, dynamic optimization of unsteady systems uses variational calculus and dynamic programming. The primary result of the first is the limiting value of power, whereas that of the second is a total generalized work potential. The generalizing quantity depends on the thermal coordinates and a dissipation ind...