Deciphering the functioning of biological networks is one of the central tasks in systems biology. In particular, signal transduction networks are crucial for the understanding of the cellular response to external and internal perturbations. Importantly, in order to cope with the complexity of these networks, mathematical and computational modeling is required. We propose a computational modeling framework in order to achieve more robust discoveries in the context of logical signaling networks. More precisely, we focus on modeling the response of logical signaling networks by means of automated reasoning using Answer Set Programming (ASP). ASP provides a declarative language for modeling various knowledge representation and reasoning proble...