U ovom radu predstavljena je osnovna Newtonova metoda za rješavanje problema bezuvjetne minimizacije i nelinearnih jednadžbi, njena konvergencija, nedostatci i neka bitna svojstva za daljni razvoj metode. Glavni problem metode je nedostatak globalne konvergencije što je razlog uvođenja globalnih metoda poput line search i trust region algoritama. Osnovna razlika line search i trust region pristupa je u tome što line search traži smjer napretka iteracije (smjer silaska) i odabire duljinu koraka u tom smjeru, dok trust region odabire područje regije povjerenja (područje maksimalne duljine koraka) i odabire točku napretka unutar te regije. Nadalje, iskazane su prednosti i nedostatci globalnih metoda, od kojih je glavni nedostatak brza konverge...
Neste trabalho propomos modificações globalmente convergentes para o Método das Assíntotas Móveis (M...
Newton’s method is a basic tool in numerical analysis and numerous applications, including operation...
A nonlinear system of equations is said to be reducible if it can be divided into m blocks (m>1) in ...
U ovom radu predstavljena je osnovna Newtonova metoda za rješavanje problema bezuvjetne minimizacije...
Ukratko, u ovome radu se bavimo Newtonovom metodom i njenim raznovrsnim poopćenjima. U prvom poglav...
Simulating complex physical systems often requires solving systems of nonlinear algebraic equations....
In inexact Newton methods for solving nonlinear systems of equations, an approximation to the step s...
Orientadores: Marcia A. Gomes Ruggiero, Vera Lucia da Rocha LopesTese (doutorado) - Universidade Est...
U ovom radu opisan je problem bezuvjetne minimizacije, a zatim je dana apstraktna definicija metoda ...
The Newton method is one of the most powerful methods for the solution of smooth unconstrained optim...
Abstract. Inexact Newton methods for finding a zero of F 1 1 are variations of Newton’s method in wh...
The paper is devoted to description of certain ways of extending the domain of convergence of Newto...
Large-scale systems of nonlinear equations appear in many applications. In various applications, the...
New algorithms for solving unconstrained optimization problems are presented based on the idea of co...
Abstract. A Newton–Krylov method is an implementation of Newton’s method in which a Krylov subspace ...
Neste trabalho propomos modificações globalmente convergentes para o Método das Assíntotas Móveis (M...
Newton’s method is a basic tool in numerical analysis and numerous applications, including operation...
A nonlinear system of equations is said to be reducible if it can be divided into m blocks (m>1) in ...
U ovom radu predstavljena je osnovna Newtonova metoda za rješavanje problema bezuvjetne minimizacije...
Ukratko, u ovome radu se bavimo Newtonovom metodom i njenim raznovrsnim poopćenjima. U prvom poglav...
Simulating complex physical systems often requires solving systems of nonlinear algebraic equations....
In inexact Newton methods for solving nonlinear systems of equations, an approximation to the step s...
Orientadores: Marcia A. Gomes Ruggiero, Vera Lucia da Rocha LopesTese (doutorado) - Universidade Est...
U ovom radu opisan je problem bezuvjetne minimizacije, a zatim je dana apstraktna definicija metoda ...
The Newton method is one of the most powerful methods for the solution of smooth unconstrained optim...
Abstract. Inexact Newton methods for finding a zero of F 1 1 are variations of Newton’s method in wh...
The paper is devoted to description of certain ways of extending the domain of convergence of Newto...
Large-scale systems of nonlinear equations appear in many applications. In various applications, the...
New algorithms for solving unconstrained optimization problems are presented based on the idea of co...
Abstract. A Newton–Krylov method is an implementation of Newton’s method in which a Krylov subspace ...
Neste trabalho propomos modificações globalmente convergentes para o Método das Assíntotas Móveis (M...
Newton’s method is a basic tool in numerical analysis and numerous applications, including operation...
A nonlinear system of equations is said to be reducible if it can be divided into m blocks (m>1) in ...