We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic co...
Abstract Based on the Lewkowycz-Maldacena prescription and the fine structure analysis of holographi...
We study the finite term of the holographic entanglement entropy of finite domains with smooth shape...
We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories h...
The holographic entanglement entropy functional for higher-curvature gravities involves a weighted s...
The holographic entanglement entropy for the most general higher derivative gravity is investigated....
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anoma...
Entanglement entropy for a spatial partition of a quantum system is studied in theories which admit ...
In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the exis...
Entanglement entropy of holographic CFTs is expected to play a crucial role in the reconstruction of...
We consider the entanglement entropy for holographic field theories in finite volume. We show that t...
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various...
The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglemen...
The holographic entanglement entropy for the most general higher derivative gravity is investigated....
We identify conditions for the entanglement entropy as a function of spatial region to be compatible...
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anoma...
Abstract Based on the Lewkowycz-Maldacena prescription and the fine structure analysis of holographi...
We study the finite term of the holographic entanglement entropy of finite domains with smooth shape...
We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories h...
The holographic entanglement entropy functional for higher-curvature gravities involves a weighted s...
The holographic entanglement entropy for the most general higher derivative gravity is investigated....
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anoma...
Entanglement entropy for a spatial partition of a quantum system is studied in theories which admit ...
In this paper, we show that a higher derivative theory, such as New Massive Gravity, allows the exis...
Entanglement entropy of holographic CFTs is expected to play a crucial role in the reconstruction of...
We consider the entanglement entropy for holographic field theories in finite volume. We show that t...
Over the past decade, the AdS/CFT correspondence has proven to be a remarkable tool to study various...
The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglemen...
The holographic entanglement entropy for the most general higher derivative gravity is investigated....
We identify conditions for the entanglement entropy as a function of spatial region to be compatible...
We study entanglement entropy in two-dimensional conformal field theories with a gravitational anoma...
Abstract Based on the Lewkowycz-Maldacena prescription and the fine structure analysis of holographi...
We study the finite term of the holographic entanglement entropy of finite domains with smooth shape...
We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories h...