Abstract Background In systems biology, it is important to reconstruct regulatory networks from quantitative molecular profiles. Gaussian graphical models (GGMs) are one of the most popular methods to this end. A GGM consists of nodes (representing the transcripts, metabolites or proteins) inter-connected by edges (reflecting their partial correlations). Learning the edges from quantitative molecular profiles is statistically challenging, as there are usually fewer samples than nodes (‘high dimensional problem’). Shrinkage methods address this issue by learning a regularized GGM. However, it remains open to study how the shrinkage affects the final result and its interpretation. Results We show that the shrinkage biases the partial correlat...