Recursion leads to automatic variable blocking for dense linear‐algebra algorithms. The recursive way of programming algorithms eliminates using BLAS level 2 during the factorization steps. For this and other reasons recursion usually speeds up the algorithms. The Cholesky factorization algorithm for positive definite matrices and LU factorization for general matrices are formulated. Different storage data formats and recursive BLAS are explained in this paper. Performance graphes of packed and recursive Cholesky algorithms are presented. Lawra – rekursyviniai tiesinės algebros algoritmai Santrauka. Rekursyviniai algoritmai leidžia automatiškai parinkti optimalų bloko dydį realizuojant tiesinės algebros algoritmus su pilnomis...