Lyapunov, Weinstein and Moser obtained remarkable theorems giving sufficient conditions for the existence of periodic orbits emanating from an equilibrium point of a differential system with a first integral. Using averaging theory of first order we established in [1] a similar result for a differential system without assuming the existence of a first integral. Now, using averaging theory of the second order, we extend our result to the case when the first order average is identically zero. Our result can be interpreted as a kind of degenerated Hopf bifurcation
Altres ajuts: Fundación Séneca de la Región de Murcia grant number 20783/PI/18We deal with non-auton...
Agraïments: The second author is partially supported by NNSF of China grant 10671123 and NCET of Chi...
Agraïments: The first author is supported by CNPq 248501/2013-5. CAPES grant 88881.030454 /2013-01 f...
Agraïments: The first and third authors were partially supported by FCT through CAMGSD, Lisbon.Lyapu...
Lyapunov, Weinstein and Moser obtained remarkable theorems giving sufficient conditions for the exis...
We show how to apply to Hamiltonian differential systems recent results for studying the periodic or...
AbstractWe consider the bifurcation of periodic orbits from an equilibrium in Hamiltonian systems. T...
We provide an explicit expression for the solutions of the perturbed first order differential equati...
En este trabajo presentamos nuevos resultados en la teoría del promedio para encontrar soluciones pe...
Agraïments: The third and fourth authors are partially supported by NNSF of China grant number 11271...
En este trabajo presentamos nuevos resultados en la teoría del promedio para encontrar soluciones pe...
In principle, it is possible to prove the existence and stability of a stable periodic orbit of a se...
AbstractWe consider the bifurcation of periodic orbits from an equilibrium in Hamiltonian systems. T...
We study the bifurcation of hyperbolic periodic orbits from a four-dimensional nonlinear center in a...
AbstractThe existence of periodic orbits for Hamiltonian systems at low positive energies can be ded...
Altres ajuts: Fundación Séneca de la Región de Murcia grant number 20783/PI/18We deal with non-auton...
Agraïments: The second author is partially supported by NNSF of China grant 10671123 and NCET of Chi...
Agraïments: The first author is supported by CNPq 248501/2013-5. CAPES grant 88881.030454 /2013-01 f...
Agraïments: The first and third authors were partially supported by FCT through CAMGSD, Lisbon.Lyapu...
Lyapunov, Weinstein and Moser obtained remarkable theorems giving sufficient conditions for the exis...
We show how to apply to Hamiltonian differential systems recent results for studying the periodic or...
AbstractWe consider the bifurcation of periodic orbits from an equilibrium in Hamiltonian systems. T...
We provide an explicit expression for the solutions of the perturbed first order differential equati...
En este trabajo presentamos nuevos resultados en la teoría del promedio para encontrar soluciones pe...
Agraïments: The third and fourth authors are partially supported by NNSF of China grant number 11271...
En este trabajo presentamos nuevos resultados en la teoría del promedio para encontrar soluciones pe...
In principle, it is possible to prove the existence and stability of a stable periodic orbit of a se...
AbstractWe consider the bifurcation of periodic orbits from an equilibrium in Hamiltonian systems. T...
We study the bifurcation of hyperbolic periodic orbits from a four-dimensional nonlinear center in a...
AbstractThe existence of periodic orbits for Hamiltonian systems at low positive energies can be ded...
Altres ajuts: Fundación Séneca de la Región de Murcia grant number 20783/PI/18We deal with non-auton...
Agraïments: The second author is partially supported by NNSF of China grant 10671123 and NCET of Chi...
Agraïments: The first author is supported by CNPq 248501/2013-5. CAPES grant 88881.030454 /2013-01 f...