With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their possible applications is a rapidly growing field of quantum information science. In this work, we demonstrate that variational quantum algorithms feasible on such devices address a challenge central to the field of quantum metrology: The identification of near-optimal probes and measurement operators for noisy multi-parameter estimation problems. We first introduce a general framework that allows for sequential updates of variational parameters to improve probe states and measurements and is widely applicable to both discrete and continuous-variable settings. We then demonstrate the practical functioning of the approach through numerical simula...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...
We develop a variational principle to determine the quantum controls and initial state that optimize...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...
With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their po...
With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their po...
As quantum computers are developing, they are beginning to become useful for practical applications,...
Measurement noise is a major source of noise in quantum metrology. Here, we explore preprocessing pr...
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum met...
This thesis aims to help in bridging the gap between the ideals of theoretical quantum metrology and...
Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimat...
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum met...
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotte...
The dual tasks of quantum Hamiltonian learning and quantum Gibbs sampling are relevant to many impor...
Applications such as simulating complicated quantum systems or solving large-scale linear algebra pr...
Quantum parameter estimation promises a high-precision measurement in theory, however, how to design...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...
We develop a variational principle to determine the quantum controls and initial state that optimize...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...
With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their po...
With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their po...
As quantum computers are developing, they are beginning to become useful for practical applications,...
Measurement noise is a major source of noise in quantum metrology. Here, we explore preprocessing pr...
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum met...
This thesis aims to help in bridging the gap between the ideals of theoretical quantum metrology and...
Quantum metrology aims to exploit quantum phenomena to overcome classical limitations in the estimat...
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum met...
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotte...
The dual tasks of quantum Hamiltonian learning and quantum Gibbs sampling are relevant to many impor...
Applications such as simulating complicated quantum systems or solving large-scale linear algebra pr...
Quantum parameter estimation promises a high-precision measurement in theory, however, how to design...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...
We develop a variational principle to determine the quantum controls and initial state that optimize...
Many prominent quantum computing algorithms with applications in fields such as chemistry and materi...