This thesis deals with the problem of detecting unknown signals at low Signal- to- Noise Ratio. This work focuses on the definition, study and implementation of efficient methods able to discern only-noise observations from those that presumably carry the information of interest in a sparse way. The relevance of these methods is assessed on hyperspectral data as an applicative part. In the first part of this work, the basic principles of statistical hypothesis testing together with a general overview on sparse representations, estimation and detection are introduced. In the second part of the manuscript, two statistical hypotheses tests are proposed and studied. Both are adapted to the detection of sparse signals. The behaviors and the rela...