Adviser: Bela Erdelyi.The future of particle accelerators is moving towards the intensity frontier; the need to place more particles into a smaller space is a common requirement of nearly all applications of particle accelerators. Putting large numbers of particles in a small space means that the mutual repulsion of these charged particles becomes a significant factor, this effect is called space charge. In this work we develop a series of differential algebra based methods to simulate the effects of space charge in particle accelerators. These methods were used to model the University of Maryland Electron Ring, a small 3.8 meter diameter 10 KeV electron storage ring designed to observe the effects of space charge in a safe, cost effective ...