A generalized Kummer surface $X$ obtained as the quotient of an abelian surface by a symplectic automorphism of order 3 contains a $9\mathbf{A}_{2}$-configuration of $(-2)$-curves. Such a configuration plays the role of the $16\mathbf{A}_{1}$-configurations for usual Kummer surfaces. In this paper we construct $9$ other such $9\mathbf{A}_{2}$-configurations on the generalized Kummer surface associated to the double cover of the plane branched over the sextic dual curve of a cubic curve. The new $9\mathbf{A}_{2}$-configurations are obtained by taking the pullback of a certain configuration of $12$ conics which are in special position with respect to the branch curve, plus some singular quartic curves. We then construct some automorphisms of ...