International audienceThe chapter studies relations between billiard ball model, reversible cellular automata, conservative and reversible logics and Turing machines. At first we introduce block cellular automata and consider the automata reversibility and simulation dependencies between the block cellular automata and classical cellular automata. We prove that there exists a universal, i.e. simulating any Turing machine, block cellular automaton with eleven states, which is geometrically minimal. Basics of the billiard ball model and presentation of an information in the model are discussed then. We demonstrate how to implement ball movement, reflection of a signal, delays and cycles, collision of signals in configurations of the cellular ...