Understanding early human vocalization development is a key part of understanding the origins of human communication. What are the characteristics of early human vocalizations and how do they change over time? What mechanisms underlie these changes? This dissertation is a collection of three papers that take a computational approach to addressing these questions, using neural network simulation and automated analysis of naturalistic data.The first paper uses a self-organizing neural network to automatically derive holistic acoustic features characteristic of prelinguistic vocalizations. A supervised neural network is used to classify vocalizations into human-judged categories and to predict the age of the child vocalizing. The study represe...