Three research problems are addressed in this study. The first one is a semi-supervised clustering problem with instance-level constraints where each data object is either a closed convex bounded polytope or a closed disk. We first model the problem of computing the centroid of a given cluster as a second order cone programming problem. Also, a subgradient algorithm is adopted for its faster solution. We then propose a mixed-integer second order cone programming formulation and six heuristic approaches for the considered clustering problem. Finally, we compare solution approaches in terms of computational time and quality on randomly generated and real life datasets. The second problem deals with mining a single graph to find central group ...