The polynomial based differential quadrature and the Fourier expansion based differential quadrature method are applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of a transverse external oblique magnetic field. Numerical solution for velocity and induced magnetic field is obtained for the steady-state, fully developed, incompressible flow of a conducting fluid inside of the duct. Equal and unequal grid point discretizations are both used in the domain and it is found that the polynomial based differential quadrature method with a reasonable number of unequally spaced grid points gives accurate numerical solution of the MHD flow problem. Some graphs are presented showing the behaviours of the vel...
This paper investigates the flow behavior of a viscous, incompressible and electrically conducting f...
This paper presents numerical solution of the magnetohydrodynamic (MHD) flow in a rectangular duct u...
AbstractIn this paper, a fundamental solution for the coupled convection–diffusion type equations is...
A finite element method is given to obtain the solution in terms of velocity and induced magnetic fi...
In this study, matrix representation of the Chebyshev collocation method for partial differential eq...
In this study, matrix representation of the Chebyshev collocation method for partial differential eq...
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms ...
In this study, the time dependent and coupled magnetohydrodynamic (MHD) flow equations are solved in...
The magnetohydrodynamic (MHD) flow of an incompressible, viscous and electrically conducting fluid i...
AbstractThe magnetohydrodynamic (MHD) flow in a rectangular duct is investigated for the case when t...
In this paper, a fundamental solution for the coupled convection-diffusion type equations is derived...
This paper presents an analytical solution of the MHD problem on a fully developed flow of a conduct...
Abstract Followed by a review of previous studies of magnetohydrodynamic (MHD) duct flows in a non-u...
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangu...
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangu...
This paper investigates the flow behavior of a viscous, incompressible and electrically conducting f...
This paper presents numerical solution of the magnetohydrodynamic (MHD) flow in a rectangular duct u...
AbstractIn this paper, a fundamental solution for the coupled convection–diffusion type equations is...
A finite element method is given to obtain the solution in terms of velocity and induced magnetic fi...
In this study, matrix representation of the Chebyshev collocation method for partial differential eq...
In this study, matrix representation of the Chebyshev collocation method for partial differential eq...
This paper simulates the 2D transient magnetohydrodynamic (MHD) flow in a rectangular duct in terms ...
In this study, the time dependent and coupled magnetohydrodynamic (MHD) flow equations are solved in...
The magnetohydrodynamic (MHD) flow of an incompressible, viscous and electrically conducting fluid i...
AbstractThe magnetohydrodynamic (MHD) flow in a rectangular duct is investigated for the case when t...
In this paper, a fundamental solution for the coupled convection-diffusion type equations is derived...
This paper presents an analytical solution of the MHD problem on a fully developed flow of a conduct...
Abstract Followed by a review of previous studies of magnetohydrodynamic (MHD) duct flows in a non-u...
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangu...
In this work, a steady two dimensional MHD flow of a viscous incompressible fluid through a rectangu...
This paper investigates the flow behavior of a viscous, incompressible and electrically conducting f...
This paper presents numerical solution of the magnetohydrodynamic (MHD) flow in a rectangular duct u...
AbstractIn this paper, a fundamental solution for the coupled convection–diffusion type equations is...