Cryptographic computations such as factoring integers and computing discrete logarithms over finite fields require solving a large system of linear equations. When dealing with such systems iterative approaches such as Wiedemann or Lanczos are used. Both methods are based on the computation of a Krylov subspace in which the computational cost is often dominated by successive matrix-vector products. We introduce a new algorithm for computing iterative matrix-vector multiplications over finite fields. The proposed algorithm consists of two stages. The first stage (preprocessing) sorts the elements of the matrix row by row in ascending order and produces permutation tables. After preprocessing, many consecutive multiplications can be performed...