Linear programming is a key technique for analysis and verification of numerical properties in programs, neural networks, etc. In particular, in program analysis based on abstract interpretation, many numerical abstract domains (such as Template Constraint Matrix, constraint-only polyhedra, etc.) are designed on top of linear programming. However, most state-of-the-art linear programming solvers use floating-point arithmetic in their implementations, leading to an approximate result that may be unsound. On the other hand, the solvers implemented using exact arithmetic are too costly. To this end, this paper focuses on advancing rigorous linear programming techniques based on floating-point arithmetic for building sound and efficient program...