Knowledge graphs have been shown to be an important data structure for many applications, including chatbot development, data integration, and semantic search. In the enterprise domain, such graphs need to be constructed based on both structured (e.g. databases) and unstructured (e.g. textual) internal data sources; preferentially using automatic approaches due to the costs associated with manual construction of knowledge graphs. However, despite the growing body of research that leverages both structured and textual data sources in the context of automatic knowledge graph construction, the research community has centered on either one type of source or the other. In this paper, we conduct a preliminary literature review to investigate appr...