Data races are among the most common bugs in concurrency. The standard approach to data-race detection is via dynamic analyses, which work over executions of concurrent programs, instead of the program source code. The rich literature on the topic has created various notions of dynamic data races, which are known to be detected efficiently when certain parameters (e.g., number of threads) are small. However, the fine-grained complexity of all these notions of races has remained elusive, making it impossible to characterize their trade-offs between precision and efficiency. In this work we establish several fine-grained separations between many popular notions of dynamic data races. The input is an execution trace ? with ? events, ? threads ...