This work considers software execution traces, where a trace is a sequence of run-time events. Each user of a software system collects the set of traces covered by her execution of the software, and reports this set to an analysis server. Our goal is to report the local data of each user in a privacy-preserving manner by employing local differential privacy, a powerful theoretical framework for designing privacy-preserving data analysis. A significant advantage of such analysis is that it offers principled "built-in" privacy with clearly-defined and quantifiable privacy protections. In local differential privacy, the data of an individual user is modified using a local randomizer before being sent to the untrusted analysis server. Based on ...