Algoritmy posilovaného učení (RL) umí optimálně řešit problémy dynamického rozhodování a řízení např. v technických disciplínách, ekonomice, medicíně a umělé inteligenci. Ani nejnovější metody RL ale dosud nepřekročily hranici mezi malými prostory diskrétních stavů a spojitými prostory. K reprezentaci užitkové funkce a řídící strategie využívají tyto algoritmy numerické funkční aproximátory, např. ve formě RBF funkcí nebo neuronových sítí. I když numerické aproximátory jsou dobře prostudovanou oblastí, výběr vhodného aproximátoru a jeho architektury je velmi obtížným krokem, který vyžaduje ladění metodou pokus-omyl. Navíc, numerické aproximátory díky své structuře skoro vždy obsahují tzv. artefakty, které mohou uškodit kvalitě řízení kontro...
Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of ...
This thesis presents a novel hierarchical learning framework, Reinforcement Learning Optimal Control...
Real-world and simulated real-world domains, such as flying and driving, commonly have the character...
This paper addresses the problem of deriving a policy from the value function in the context of crit...
Reinforcement learning algorithms can solve dynamic decision-making and optimal control problems. Wi...
International audienceA novel reinforcement learning algorithm that deals with both continuous state...
Approximate Reinforcement Learning (RL) is a method to solve sequential decisionmaking and dynamic c...
This paper addresses the problem of deriving a policy from the value function in the context of rein...
The framework of dynamic programming (DP) and reinforcement learning (RL) can be used to express imp...
Symbolic Performance & Learning In Continuous-valued Environments by Seth Olds Rogers Co-Chairs:...
Institute for Adaptive and Neural ComputationAward number: 98318242.This thesis is about the dynamic...
The reinforcement learning (RL) framework enables to construct controllers that try to find find an ...
Reinforcement learning (RL) is one of the three main areas in machine learning (ML) with a solid the...
Continuous actor-critic learning automaton, jeb CACLA, algoritma aktiera un kritiķa komponentes ir a...
Programmatic Reinforcement Learning is the study of learning algorithms that can leverage partial sy...
Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of ...
This thesis presents a novel hierarchical learning framework, Reinforcement Learning Optimal Control...
Real-world and simulated real-world domains, such as flying and driving, commonly have the character...
This paper addresses the problem of deriving a policy from the value function in the context of crit...
Reinforcement learning algorithms can solve dynamic decision-making and optimal control problems. Wi...
International audienceA novel reinforcement learning algorithm that deals with both continuous state...
Approximate Reinforcement Learning (RL) is a method to solve sequential decisionmaking and dynamic c...
This paper addresses the problem of deriving a policy from the value function in the context of rein...
The framework of dynamic programming (DP) and reinforcement learning (RL) can be used to express imp...
Symbolic Performance & Learning In Continuous-valued Environments by Seth Olds Rogers Co-Chairs:...
Institute for Adaptive and Neural ComputationAward number: 98318242.This thesis is about the dynamic...
The reinforcement learning (RL) framework enables to construct controllers that try to find find an ...
Reinforcement learning (RL) is one of the three main areas in machine learning (ML) with a solid the...
Continuous actor-critic learning automaton, jeb CACLA, algoritma aktiera un kritiķa komponentes ir a...
Programmatic Reinforcement Learning is the study of learning algorithms that can leverage partial sy...
Reinforcement learning (RL) agents can learn to control a nonlinear system without using a model of ...
This thesis presents a novel hierarchical learning framework, Reinforcement Learning Optimal Control...
Real-world and simulated real-world domains, such as flying and driving, commonly have the character...