In this article we study the structure of Γ-invariant spaces of L2(S). Here S is a second countable LCA group. The invariance is with respect to the action of Γ, a non commutative group in the form of a semidirect product of a discrete cocompact subgroup of S and a group of automorphisms. This class includes in particular most of the crystallographic groups. We obtain a complete characterization of Γ-invariant subspaces in terms of range functions associated to shift-invariant spaces. We also define a new notion of range function adapted to the Γ-invariance and construct Parseval frames of orbits of some elements in the subspace, under the group action. These results are then applied to prove the existence and construction of a Γ-invariant ...
AbstractLet G be a σ-compact and locally compact group. If f ϵ L∞(G) let Uf be the closed subspace o...
Shift spaces are sets of colorings of a group which avoid a set of forbidden patterns and are endowe...
Summary. In this chapter we discuss the problem of finding the shift-invariant space model that best...
In this paper, we prove the existence of a particular diagonalization for normal bounded operators d...
Given discrete groups Γ ⊂ Δ we characterize (Γ , σ) -invariant spaces that are also invariant under ...
This article generalizes recent results in the extra invariance for shift-invariant spaces to the co...
AbstractIn this article we extend the theory of shift-invariant spaces to the context of LCA groups....
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how...
AbstractThis article generalizes recent results in the extra invariance for shift-invariant spaces t...
AbstractUsing the range function approach to shift invariant spaces in L2(Rn) we give a simple chara...
Abstract. We investigate shift invariant subspaces of L2(G), where G is a locally compact abelian gr...
AbstractIn this paper we study structural properties of shift–modulation invariant (SMI) spaces, als...
A shift-invariant space is a space of functions that is invariant under integer translations. Such s...
AbstractA simple characterization is given of finitely generated subspaces of L2(Rd) which are invar...
Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces ar...
AbstractLet G be a σ-compact and locally compact group. If f ϵ L∞(G) let Uf be the closed subspace o...
Shift spaces are sets of colorings of a group which avoid a set of forbidden patterns and are endowe...
Summary. In this chapter we discuss the problem of finding the shift-invariant space model that best...
In this paper, we prove the existence of a particular diagonalization for normal bounded operators d...
Given discrete groups Γ ⊂ Δ we characterize (Γ , σ) -invariant spaces that are also invariant under ...
This article generalizes recent results in the extra invariance for shift-invariant spaces to the co...
AbstractIn this article we extend the theory of shift-invariant spaces to the context of LCA groups....
Given an arbitrary finite set of data F = {f1, ..., fm} ⊂ L2(Rd) we prove the existence and show how...
AbstractThis article generalizes recent results in the extra invariance for shift-invariant spaces t...
AbstractUsing the range function approach to shift invariant spaces in L2(Rn) we give a simple chara...
Abstract. We investigate shift invariant subspaces of L2(G), where G is a locally compact abelian gr...
AbstractIn this paper we study structural properties of shift–modulation invariant (SMI) spaces, als...
A shift-invariant space is a space of functions that is invariant under integer translations. Such s...
AbstractA simple characterization is given of finitely generated subspaces of L2(Rd) which are invar...
Let H be Hilbert space and (Ω, m) a σ-finite measure space. Multiplicatively invariant(MI) spaces ar...
AbstractLet G be a σ-compact and locally compact group. If f ϵ L∞(G) let Uf be the closed subspace o...
Shift spaces are sets of colorings of a group which avoid a set of forbidden patterns and are endowe...
Summary. In this chapter we discuss the problem of finding the shift-invariant space model that best...