The fermionization regime and entanglement correlations of two distinguishable harmonically confined fermions interacting via a zero-range potential is addressed. We present two alternative representations of the ground state that we associate with two different types of one-dimensional spaces. These spaces, in turn, induce different correlations between particles and thus require a suitable definition of entanglement. We find that the entanglement of the ground state is strongly conditioned by those one-dimensional space features. We also find that in the strongly attractive regime the relative ground state is a highly localized state leading to maximum entanglement. Our analysis shows that in the strongly repulsive regime the ground state...