In a variety of reasoning tasks, one estimates the likelihood of events by means of volumes of sets they define. Such sets need to be measurable, which is usually achieved by putting bounds, sometimes ad hoc, on them. We address the question how unbounded or unmeasurable sets can be measured nonetheless. Intuitively, we want to know how likely a randomly chosen point is to be in a given set, even in the absence of a uniform distribution over the entire space. To address this, we follow a recently proposed approach of taking intersection of a set with balls of increasing radius, and defining the measure by means of the asymptotic behavior of the proportion of such balls taken by the set. We show that this approach works for every set definab...