We define here an analogue, for the Néron model of a semi-stable abelian variety defined over a number field, of M. J. Taylor's class-invariant homomorphism (defined for abelian schemes). Then we extend an annulation result (in the case of an elliptic curve), and an injectivity result regarding an arakelovian version of this homomorphism. This is the sequel to the paper "Invariants de classes : le cas semi-stable"
Abstract. The Jacobian J0(23) of the modular curve X0(23) is a semi-stable abelian variety over Q wi...
The class-invariant homomorphism allows one to measure the Galois module structure of torsors--under...
Dans cette thèse, on s'intéresse à la propriété de semi-stabilité des variétés abéliennes sur les co...
We define here an analogue, for a semi-stable group scheme whose generic fiber is an abelian variety...
We define here an analogue, for a semi-stable group scheme whose generic fiber is an abelian variety...
In this thesis we study the Galois structure of torsors under finite or quasi-finite flat group sche...
The so-called class-invariant homomorphism $\psi$ measures the Galois module structure of torsors--u...
The so-called class-invariant homomorphism ψ measures the Galois module structure of torsors—under a...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
The semistable reduction theorem for curves was discussed in Christian’s notes. In these notes, we w...
Given a finitely generated field extension K of the rational numbers and an abelian variety C over K...
We find invariants of number fields and of Galois representations of number fields that characterise...
The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomial...
AbstractGiven an abelian variety over a field with a discrete valuation, Grothendieck defined a cert...
Abstract. The Jacobian J0(23) of the modular curve X0(23) is a semi-stable abelian variety over Q wi...
The class-invariant homomorphism allows one to measure the Galois module structure of torsors--under...
Dans cette thèse, on s'intéresse à la propriété de semi-stabilité des variétés abéliennes sur les co...
We define here an analogue, for a semi-stable group scheme whose generic fiber is an abelian variety...
We define here an analogue, for a semi-stable group scheme whose generic fiber is an abelian variety...
In this thesis we study the Galois structure of torsors under finite or quasi-finite flat group sche...
The so-called class-invariant homomorphism $\psi$ measures the Galois module structure of torsors--u...
The so-called class-invariant homomorphism ψ measures the Galois module structure of torsors—under a...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
Presenting the first systematic treatment of the behavior of Néron models under ramified base change...
The semistable reduction theorem for curves was discussed in Christian’s notes. In these notes, we w...
Given a finitely generated field extension K of the rational numbers and an abelian variety C over K...
We find invariants of number fields and of Galois representations of number fields that characterise...
The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomial...
AbstractGiven an abelian variety over a field with a discrete valuation, Grothendieck defined a cert...
Abstract. The Jacobian J0(23) of the modular curve X0(23) is a semi-stable abelian variety over Q wi...
The class-invariant homomorphism allows one to measure the Galois module structure of torsors--under...
Dans cette thèse, on s'intéresse à la propriété de semi-stabilité des variétés abéliennes sur les co...