It is observed that the interaction of an intense ultrashort laser pulse with a near-critical gas jet results in the pulse collapse and the deposition of a significant fraction of the energy. This deposition happens in a small and well-localized volume in the rising part of the gas jet, where the electrons are efficiently accelerated and heated. A collisionless plasma expansion over ∼150 μm at a subrelativistic velocity (∼c/3) has been optically monitored in time and space, and attributed to the quasistatic field ionization of the gas associated with the hot electron current. Numerical simulations in good agreement with the observations suggest the acceleration in the collapse region of relativistic electrons, along with the excitation of ...