Nous déterminons l'ordre du sous-groupe de capitulation pour le module de Bertrandias-Payan dans une $\ell$-extension arbitraire de corps de nombres qui satisfait la conjecture de Leopoldt. Nous relions en particulier la question de sa trivialisation au problème des tours localement cyclotomiques.We compute the capitulation kernel for the module of Bertrandias-Payan in an arbitrary $\ell$-extension of number fields which satisfies the Leopoldt conjecture. As a consequence we relate the existence of extensions with trivial such module to the classical problem of locally cyclotomic towers
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...
We compute the capitulation kernel for the module of Bertrandias-Payan in an arbitrary $\ell$-exten...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Let K = Q(root-q), where q is any prime number congruent to 7 modulo 8, and let O be the ring of int...
Let L/K be an extension of number fields where L/ℚ is abelian. We define such an extension to be Leo...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...
We compute the capitulation kernel for the module of Bertrandias-Payan in an arbitrary $\ell$-exten...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
For a number field K and a prime number p we denote by BP_K the compositum of the cyclic p-extension...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Published in: Publications mathématiques de Besançon. Algèbre et théorie des nombres (2016), pp. 25-...
Let K = Q(root-q), where q is any prime number congruent to 7 modulo 8, and let O be the ring of int...
Let L/K be an extension of number fields where L/ℚ is abelian. We define such an extension to be Leo...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
International audienceLet p be a prime number, and let K/k be a finite Galois extension of number fi...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...
A Leopoldt-type result for rings of integers of cyclotomic extensions. - In: Canadian mathematical b...