This paper investigates the execution of tree-shaped task graphs using multiple processors. Each edge of such a tree represents some large data. A task can only be executed if all input and output data fit into memory, and a data can only be removed from memory after the completion of the task that uses it as an input data. Such trees arise in the multifrontal method of sparse matrix factorization. The peak memory needed for the processing of the entire tree depends on the execution order of the tasks. With one processor the objective of the tree traversal is to minimize the required memory. This problem was well studied and optimal polynomial algorithms were proposed. Here, we extend the problem by considering multiple processors, which is...