Abstract Aerosols have a dimming and cooling effect and change hydrological regimes, thus affecting carbon fluxes, which are sensitive to climate. Aerosols also scatter sunlight, which increases the fraction of diffuse radiation, increasing photosynthesis. There remains no clear conclusion whether the impact of aerosols on land carbon fluxes is larger through diffuse radiation change than through changes in other climate variables. In this study, we quantified the overall physical impacts of anthropogenic aerosols on land C fluxes and explored the contribution from each factor using a set of factorial simulations driven by climate and aerosol data from the IPSL‐CM6A‐LR experiments during 1850–2014. A newly developed land surface model which...